Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 458
Filtrar
1.
Mol Cancer Ther ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38561019

RESUMO

Targeting the DNA damage response (DDR) pathway is an emerging therapeutic approach for leiomyosarcoma (LMS), and loss of RNase H2, a DDR pathway member, is a potentially actionable alteration for DDR targeted treatments. Therefore, we designed a protein and genomic based RNase H2 screening assay to determine its prevalence and prognostic significance. Using a selective RNase H2 antibody on a pan-tumor tissue microarray (TMA), RNase H2 loss was more common in LMS (11.5%, 9/78) than across all tumors (3.8%, 32/843). In a separate LMS cohort, RNase H2 deficiency was confirmed in uterine LMS (U-LMS, 21%, 23/108) and soft-tissue LMS (ST-LMS) (30%, 39/102). In the TCGA database, RNASEH2B homozygous deletions (HomDels) were found in 6% (5/80) of LMS cases, with a higher proportion in U-LMS (15%; 4/27) compared to ST-LMS (2%; 1/53). Using the SNiPDx targeted-NGS sequencing assay to detect biallelic loss of function in select DDR related genes, we found RNASEH2B HomDels in 54% (19/35) of U-LMS cases with RNase H2 loss by IHC, and 7% (3/43) HomDels in RNase H2 intact cases. No RNASEH2B HomDels were detected in ST-LMS. In U-LMS patient cohort (n = 109), no significant overall survival difference was seen in patients with RNase H2 loss versus intact, or RNASEH2B HomDel (n=12) vs Non-HomDel (n=37). The overall diagnostic accuracy, sensitivity, and specificity of RNase H2 IHC for detecting RNASEH2B HomDels in U-LMS was 76%, 93% and 71% respectively, and it is being developed for future predictive biomarker driven clinical trials targeting DDR in U-LMS.

2.
Am J Surg Pathol ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38590014

RESUMO

Next-generation sequencing (NGS) is increasingly being utilized as an ancillary tool for diagnostically challenging melanocytic neoplasms. It is incumbent upon the pathology community to perform studies assessing the benefits and limitations of these tools in specific diagnostic scenarios. One of the most challenging diagnostic scenarios faced by skin pathologists involves accurate diagnosis of desmoplastic melanocytic neoplasms (DMNs). In this study, 20 expert melanoma pathologists rendered a diagnosis on 47 DMNs based on hematoxylin and eosin sections with demographic information. After submitting their diagnosis, the experts were given the same cases, but this time with comprehensive genomic sequencing results, and asked to render a diagnosis again. Identification of desmoplastic melanoma (DM) improved by 7%, and this difference was statistically significant (P<0.05). In addition, among the 15 melanoma cases, in the pregenomic assessment, only 12 were favored to be DM by the experts, while after genomics, this improved to 14 of the cases being favored to be DM. In fact, some cases resulting in metastatic disease had a substantial increase in the number of experts recognizing them as DM after genomics. The impact of the genomic findings was less dramatic among benign and intermediate-grade desmoplastic tumors (BIDTs). Interobserver agreement also improved, with the Fleiss multirater Kappa being 0.36 before genomics to 0.4 after genomics. NGS has the potential to improve diagnostic accuracy in the assessment of desmoplastic melanocytic tumors. The degree of improvement will be most substantial among pathologists with some background and experience in bioinformatics and melanoma genetics.

3.
J Pathol ; 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38482738

RESUMO

Gene disruption from double-strand DNA breaks within introns is a mechanism of inactivating the tumor suppressor TP53. This occurs more frequently in osteosarcoma and biliary adenocarcinoma compared with other cancer types. The patterns of intron breakpoints within TP53 do not correlate with prevalence, intron length, or overall genome-wide levels of rearrangements. Therefore, these breakpoints appear to be selected for reasons other than to disrupt TP53. A recent article published by Saba et al in The Journal of Pathology illustrates a benefit to having breakpoints within intron 1 using high-quality matched genomic and transcriptomic osteosarcoma sequencing data as well as in vitro validation. The authors describe how the rearrangement results in relocation of the TP53 promoter region to regions upstream of genes that encode members of cartilage, growth plate development, osteoclast formation, and other TP53-related pathways. The upregulation of these genes by the TP53 promoter are gain-of-function events that are likely to promote tumor development and growth. Therefore, this article presents a potential new paradigm in which a single mutation would result in both the loss of a tumor suppressor and the gain of an oncogenic program. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.

4.
Am J Surg Pathol ; 48(5): 538-545, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38525831

RESUMO

Drivers of Spitz neoplasms include activating point mutations in HRAS and Spitz-associated genomic fusions. It has become evident that some BRAF -mutated melanocytic neoplasms can morphologically mimic Spitz tumors (STs). These have been termed BRAF mutated and morphologically spitzoid (BAMS). In this study, 17 experts from the International Melanoma Pathology Study Group assessed 54 cases which included 40 BAMS and 14 true STs. The participants reviewed the cases blinded to the genomic data and selected among several diagnostic options, including BAMS, ST, melanoma, and other. A total of 38% of all diagnostic selections in the BAMS cases were for BAMS, whereas 32% were for ST. In 22 of the BAMS cases, the favored diagnosis was BAMS, whereas in 17 of the BAMS cases, the favored diagnosis was ST. Among the 20 cases in the total group of 54 with the highest number of votes for ST, half were BAMS. Of BAMS, 75% had a number of votes for ST that was within the SD of votes for ST seen among true ST cases. There was poor interobserver agreement for the precise diagnosis of the BAMS (kappa = 0.16) but good agreement that these cases were not melanoma (kappa = 0.7). BAMS nevi/tumors can closely mimic Spitz neoplasms. Expert melanoma pathologists in this study favored a diagnosis of ST in nearly half of the BAMS cases. There are BAMS cases that even experts cannot morphologically distinguish from true Spitz neoplasms.


Assuntos
Melanoma , Nevo de Células Epitelioides e Fusiformes , Nevo , Neoplasias Cutâneas , Humanos , Melanoma/diagnóstico , Melanoma/genética , Melanoma/patologia , Neoplasias Cutâneas/diagnóstico , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Proteínas Proto-Oncogênicas B-raf/genética , Nevo de Células Epitelioides e Fusiformes/diagnóstico , Nevo de Células Epitelioides e Fusiformes/genética , Nevo/diagnóstico , Diagnóstico Diferencial
5.
Nat Cancer ; 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38351182

RESUMO

Based on the demonstrated clinical activity of immune-checkpoint blockade (ICB) in advanced dedifferentiated liposarcoma (DDLPS) and undifferentiated pleomorphic sarcoma (UPS), we conducted a randomized, non-comparative phase 2 trial ( NCT03307616 ) of neoadjuvant nivolumab or nivolumab/ipilimumab in patients with resectable retroperitoneal DDLPS (n = 17) and extremity/truncal UPS (+ concurrent nivolumab/radiation therapy; n = 10). The primary end point of pathologic response (percent hyalinization) was a median of 8.8% in DDLPS and 89% in UPS. Secondary end points were the changes in immune infiltrate, radiographic response, 12- and 24-month relapse-free survival and overall survival. Lower densities of regulatory T cells before treatment were associated with a major pathologic response (hyalinization > 30%). Tumor infiltration by B cells was increased following neoadjuvant treatment and was associated with overall survival in DDLPS. B cell infiltration was associated with higher densities of regulatory T cells before treatment, which was lost upon ICB treatment. Our data demonstrate that neoadjuvant ICB is associated with complex immune changes within the tumor microenvironment in DDLPS and UPS and that neoadjuvant ICB with concurrent radiotherapy has significant efficacy in UPS.

7.
Clin Cancer Res ; 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38416404

RESUMO

PURPOSE: Mutations in the ATM gene are common in multiple cancers, but clinical studies of therapies targeting ATM aberrant cancers have yielded mixed results. Refinement of ATM loss of function (LOF) as a predictive biomarker of response is urgently needed. EXPERIMENTAL DESIGN: We present the first disclosure and preclinical development of a novel, selective ATR inhibitor, ART0380, and test its antitumor activity in multiple preclinical cancer models. To refine ATM LOF as a predictive biomarker, we performed a comprehensive pan-cancer analysis of ATM variants in patient tumors, and then assessed the ATM variant-to-protein relationship. Finally, we assessed a novel ATM LOF biomarker approach in retrospective clinical datasets of patients treated with platinum-based chemotherapy or ATR inhibition. RESULTS: ART0380 had potent, selective anti-tumor activity in a range of preclinical cancer models with differing degrees of ATM LOF. Pan-cancer analysis identified 10609 ATM variants in 8587 patient tumors. Cancer-lineage specific differences were seen in: the prevalence of deleterious (Tier 1) versus unknown/benign (Tier 2) variants, selective pressure for loss of heterozygosity, and concordance between a deleterious variant and ATM loss of protein (LOP). A novel ATM LOF biomarker approach that accounts for variant classification, relationship to ATM LOP, and tissue-specific penetrance significantly enriched for patients who benefited from platinum-based chemotherapy or ATR inhibition. CONCLUSIONS: These data help to better define ATM LOF across tumor types in order to optimize patient selection and improve molecularly targeted therapeutic approaches for patients with ATM LOF cancers.

8.
Nat Commun ; 15(1): 1165, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326311

RESUMO

The t(X,17) chromosomal translocation, generating the ASPSCR1::TFE3 fusion oncoprotein, is the singular genetic driver of alveolar soft part sarcoma (ASPS) and some Xp11-rearranged renal cell carcinomas (RCCs), frustrating efforts to identify therapeutic targets for these rare cancers. Here, proteomic analysis identifies VCP/p97, an AAA+ ATPase with known segregase function, as strongly enriched in co-immunoprecipitated nuclear complexes with ASPSCR1::TFE3. We demonstrate that VCP is a likely obligate co-factor of ASPSCR1::TFE3, one of the only such fusion oncoprotein co-factors identified in cancer biology. Specifically, VCP co-distributes with ASPSCR1::TFE3 across chromatin in association with enhancers genome-wide. VCP presence, its hexameric assembly, and its enzymatic function orchestrate the oncogenic transcriptional signature of ASPSCR1::TFE3, by facilitating assembly of higher-order chromatin conformation structures demonstrated by HiChIP. Finally, ASPSCR1::TFE3 and VCP demonstrate co-dependence for cancer cell proliferation and tumorigenesis in vitro and in ASPS and RCC mouse models, underscoring VCP's potential as a novel therapeutic target.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Animais , Camundongos , Humanos , Proteômica , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Translocação Genética , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Neoplasias Renais/genética , Cromatina/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Cromossomos Humanos X/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteína com Valosina/genética
9.
J Immunother Cancer ; 12(1)2024 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-38199607

RESUMO

BACKGROUND: The extracellular matrix (ECM) and cancer-associated fibroblasts (CAFs) play major roles in tumor progression, metastasis, and the poor response of many solid tumors to immunotherapy. CAF-targeted chimeric antigen receptor-T cell therapy cannot infiltrate ECM-rich tumors such as osteosarcoma. METHOD: In this study, we used RNA sequencing to assess whether the recently invented membrane-anchored and tumor-targeted IL-12-armed (attIL12) T cells, which bind cell-surface vimentin (CSV) on tumor cells, could destroy CAFs to disrupt the ECM. We established an in vitro model of the interaction between osteosarcoma CAFs and attIL12-T cells to uncover the underlying mechanism by which attIL12-T cells penetrate stroma-enriched osteosarcoma tumors. RESULTS: RNA sequencing demonstrated that attIL12-T cell treatment altered ECM-related gene expression. Immunohistochemistry staining revealed disruption or elimination of high-density CAFs and ECM in osteosarcoma xenograft tumors following attIL12-T cell treatment, and CAF/ECM density was inversely correlated with T-cell infiltration. Other IL12-armed T cells, such as wild-type IL-12-targeted or tumor-targeted IL-12-T cells, did not disrupt the ECM because this effect depended on the engagement between CSV on the tumor cell and its ligand on the attIL12-T cells. Mechanistic studies found that attIL12-T cell treatment elevated IFNγ production on interacting with CSV+ tumor cells, suppressing transforming growth factor beta secretion and in turn upregulating FAS-mediated CAF apoptosis. CAF destruction reshaped the tumor stroma to favor T-cell infiltration and tumor inhibition. CONCLUSIONS: This study unveiled a novel therapy-attIL12-T cells-for targeting CAFs/ECM. These findings are highly relevant to humans because CAFs are abundant in human osteosarcoma.


Assuntos
Neoplasias Ósseas , Fibroblastos Associados a Câncer , Osteossarcoma , Animais , Humanos , Interleucina-12 , Xenoenxertos , Osteossarcoma/terapia , Membrana Celular , Matriz Extracelular , Modelos Animais de Doenças , Neoplasias Ósseas/terapia , Terapia Baseada em Transplante de Células e Tecidos
10.
Mod Pathol ; 37(3): 100426, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38219952

RESUMO

Perivascular epithelioid cell tumors (PEComas) are rare mesenchymal tumors that express smooth muscle and melanocytic makers. Diagnosis of PEComas can be challenging due to focal or lost expression of traditional immunohistochemical markers, limited availability of molecular testing, and morphological overlap with much more common smooth muscle tumors. This study evaluates the use of glycoprotein nonmetastatic melanoma protein B (GPNMB) immunohistochemical staining as a surrogate marker for TSC1/2/MTOR alteration or TFE3 rearrangement to differentiate PEComas from other mesenchymal tumors. Cathepsin K was also assessed for comparison. A total of 399 tumors, including PEComas, alveolar soft part sarcomas, and other histologic PEComa mimics, were analyzed using GPNMB and cathepsin K immunohistochemistry. GPNMB expression was seen in all PEComas and alveolar soft part sarcomas with the majority showing diffuse and moderate-to-strong labeling, whereas other sarcomas were negative or showed focal labeling. When a cutoff of diffuse and at least moderate staining was used, GPNMB demonstrated 95% sensitivity and 97% specificity in distinguishing PEComas from leiomyosarcoma, well-differentiated/dedifferentiated liposarcomas, and undifferentiated pleomorphic sarcomas. Cathepsin K with a cutoff of any labeling had lower sensitivity (78%) and similar specificity (94%) to GPNMB. This study highlights GPNMB as a highly sensitive marker for PEComas and suggests its potential use as an ancillary tool within a panel of markers for accurate classification of these tumors.


Assuntos
Melanoma , Neoplasias de Células Epitelioides Perivasculares , Receptores Fc , Sarcoma , Humanos , Imuno-Histoquímica , Catepsina K/metabolismo , Melanoma/patologia , Biomarcadores Tumorais/metabolismo , Neoplasias de Células Epitelioides Perivasculares/diagnóstico , Neoplasias de Células Epitelioides Perivasculares/patologia , Glicoproteínas , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Glicoproteínas de Membrana
11.
Hum Pathol ; 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38280658

RESUMO

The WHO Classification of Soft Tissue and Bone Tumours currently recognizes four categories of undifferentiated small round cell sarcoma: Ewing sarcoma, round cell sarcoma with EWSR1-non-ETS fusions including NFATc2 and PATZ1, CIC-rearranged sarcoma, and sarcoma with BCOR genetic alterations. These neoplasms frequently pose significant diagnostic challenges due to rarity and overlapping morphologic and immunohistochemical findings. Further, molecular testing, with accompanying pitfalls, may be needed to establish a definitive diagnosis. This review summarizes the clinical, histologic, immunohistochemical, and molecular features of these neoplasms. In addition, differential diagnosis and areas of uncertainty and ongoing investigation are discussed.

12.
Mod Pathol ; 37(2): 100386, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37992966

RESUMO

Mesenchymal tumors with GLI1 fusions or amplifications have recently emerged as a distinctive group of neoplasms. The terms GLI1-altered mesenchymal tumor or GLI1-altered soft tissue tumor serve as a nosological category, although the exact boundaries/criteria require further elucidation. We examined 16 tumors affecting predominantly adults (median age: 40 years), without sex predilection. Several patients had tumors of longstanding duration (>10 years). The most common primary site was soft tissue (n = 9); other sites included epidural tissue (n = 1), vertebra (n = 1), tongue (n = 1), hard palate (n = 1), and liver (n = 1). Histologically, the tumors demonstrated multinodular growth of cytologically uniform, ovoid-to-epithelioid, occasionally short spindled cells with delicate intratumoral vasculature and frequent myxoid stroma. Mitotic activity ranged from 0 to 8 mitoses/2 mm2 (mean 2). Lymphovascular invasion/protrusion of tumor cells into endothelial-lined vascular spaces was present or suspected in 6 cases. Necrosis, significant nuclear pleomorphism, or well-developed, fascicular spindle-cell growth were absent. Half demonstrated features of the newly proposed subset, "distinctive nested glomoid neoplasm." Tumors were consistently positive for CD56 (n = 5/5). A subset was stained with S100 protein (n = 7/13), SMA (n = 6/13), keratin (n = 2/9), EMA (n = 3/7), and CD99 (n = 2/6). Tumors harbored ACTB::GLI1 (n = 15) or PTCH1::GLI1 (n = 1) fusions. The assays used did not capture cases defined by GLI1 amplification. We also identified recurrent cytogenetic gains (1q, 5, 7, 8, 12, 12q13.2-ter, 21, and X). For patients with available clinical follow-up (n = 8), half were disease free. Half demonstrated distant metastases (lungs, bone, or soft tissue). Of cases without follow-up (n = 8), 2 were known recurrences, and 1 was presumed metastasis. Our results imply a more aggressive biological potential than currently reported. Given the possibility for metastasis and disease progression, even in cytologically bland, nested tumors, close clinical surveillance, akin to that for sarcoma management, may be indicated. The term GLI1-altered mesenchymal tumor with malignant potential is proposed.


Assuntos
Neoplasias de Tecido Conjuntivo e de Tecidos Moles , Sarcoma , Neoplasias de Tecidos Moles , Adulto , Humanos , Proteína GLI1 em Dedos de Zinco/genética , Neoplasias de Tecidos Moles/genética , Neoplasias de Tecidos Moles/patologia , Proteínas S100 , Sarcoma/patologia , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/análise
13.
Cancers (Basel) ; 15(24)2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38136296

RESUMO

Clear cell sarcoma (CCS) is a rare, aggressive malignancy that most frequently arises in the soft tissues of the extremities. It is defined and driven by expression of one member of a family of related translocation-generated fusion oncogenes, the most common of which is EWSR1::ATF1. The EWSR1::ATF1 fusion oncoprotein reprograms transcription. However, the binding distribution of EWSR1::ATF1 across the genome and its target genes remain unclear. Here, we interrogated the genomic distribution of V5-tagged EWSR1::ATF1 in tumors it had induced upon expression in mice that also recapitulated the transcriptome of human CCS. ChIP-sequencing of V5-EWSR1::ATF1 identified previously unreported motifs including the AP1 motif and motif comprised of TGA repeats that resemble GGAA-repeating microsatellites bound by EWSR1::FLI1 in Ewing sarcoma. ChIP-sequencing of H3K27ac identified super enhancers in the mouse model and human contexts of CCS, which showed a shared super enhancer structure that associates with activated genes.

14.
bioRxiv ; 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37873234

RESUMO

The t(X,17) chromosomal translocation, generating the ASPSCR1-TFE3 fusion oncoprotein, is the singular genetic driver of alveolar soft part sarcoma (ASPS) and some Xp11-rearranged renal cell carcinomas (RCC), frustrating efforts to identify therapeutic targets for these rare cancers. Proteomic analysis showed that VCP/p97, an AAA+ ATPase with known segregase function, was strongly enriched in co-immunoprecipitated nuclear complexes with ASPSCR1-TFE3. We demonstrate that VCP is a likely obligate co-factor of ASPSCR1-TFE3, one of the only such fusion oncoprotein co-factors identified in cancer biology. Specifically, VCP co-distributed with ASPSCR1-TFE3 across chromatin in association with enhancers genome-wide. VCP presence, its hexameric assembly, and its enzymatic function orchestrated the oncogenic transcriptional signature of ASPSCR1-TFE3, by facilitating assembly of higher-order chromatin conformation structures as demonstrated by HiChIP. Finally, ASPSCR1-TFE3 and VCP demonstrated co-dependence for cancer cell proliferation and tumorigenesis in vitro and in ASPS and RCC mouse models, underscoring VCP's potential as a novel therapeutic target.

15.
Clin Cancer Res ; 29(21): 4361-4372, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37724990

RESUMO

PURPOSE: Lynch syndrome (LS) is a hereditary condition with a high lifetime risk of colorectal and endometrial cancers. Exercise is a non-pharmacologic intervention to reduce cancer risk, though its impact on patients with LS has not been prospectively studied. Here, we evaluated the impact of a 12-month aerobic exercise cycling intervention in the biology of the immune system in LS carriers. PATIENTS AND METHODS: To address this, we enrolled 21 patients with LS onto a non-randomized, sequential intervention assignation, clinical trial to assess the effect of a 12-month exercise program that included cycling classes 3 times weekly for 45 minutes versus usual care with a one-time exercise counseling session as control. We analyzed the effects of exercise on cardiorespiratory fitness, circulating, and colorectal-tissue biomarkers using metabolomics, gene expression by bulk mRNA sequencing, and spatial transcriptomics by NanoString GeoMx. RESULTS: We observed a significant increase in oxygen consumption (VO2peak) as a primary outcome of the exercise and a decrease in inflammatory markers (prostaglandin E) in colon and blood as the secondary outcomes in the exercise versus usual care group. Gene expression profiling and spatial transcriptomics on available colon biopsies revealed an increase in the colonic mucosa levels of natural killer and CD8+ T cells in the exercise group that were further confirmed by IHC studies. CONCLUSIONS: Together these data have important implications for cancer interception in LS, and document for the first-time biological effects of exercise in the immune system of a target organ in patients at-risk for cancer.


Assuntos
Neoplasias Colorretais Hereditárias sem Polipose , Neoplasias do Endométrio , Feminino , Humanos , Neoplasias Colorretais Hereditárias sem Polipose/genética , Neoplasias Colorretais Hereditárias sem Polipose/terapia , Exercício Físico , Neoplasias do Endométrio/genética , Perfilação da Expressão Gênica , Mucosa Intestinal/patologia
16.
Clin Cancer Res ; 29(23): 4844-4852, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37747813

RESUMO

PURPOSE: Chondrosarcomas are the most common primary bone tumor in adults. Isocitrate dehydrogenase 1 (IDH1) and IDH2 mutations are prevalent. We aimed to assess the clinico-genomic properties of IDH mutant versus IDH wild-type (WT) chondrosarcomas as well as alterations in other genes. EXPERIMENTAL DESIGN: We included 93 patients with conventional and dedifferentiated chondrosarcoma for which there were available clinical next-generation sequencing data. Clinical and genomic data were extracted and compared between IDH mutant and IDH WT chondrosarcomas and between TP53 mutant and TP53 WT chondrosarcomas. RESULTS: IDH1 and IDH2 mutations are prevalent in chondrosarcoma (50.5%), more common in chondrosarcomas arising in the extremities, associated with higher age at diagnosis, and more common in dedifferentiated chondrosarcomas compared with grades 1-3 conventional chondrosarcoma. There was no difference in survival based on IDH mutation in univariate and multivariate analyses. TP53 mutation was the next most prevalent (41.9%) and is associated with worse overall survival and metastasis-free survival in both univariate and multivariate analyses. TP53 mutation was also associated with higher risk of recurrence following curative-intent surgery and worse survival among patients that presented with de novo metastatic disease. CONCLUSIONS: IDH mutations are prevalent in chondrosarcoma though were not associated with survival outcomes in this cohort. TP53 mutations were the next most common alteration and were associated with worse outcomes.


Assuntos
Neoplasias Ósseas , Condrossarcoma , Adulto , Humanos , Mutação , Condrossarcoma/genética , Condrossarcoma/patologia , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Osso e Ossos/patologia , Genômica , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Proteína Supressora de Tumor p53/genética
17.
Cell ; 186(18): 3921-3944.e25, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37582357

RESUMO

Cancer driver events refer to key genetic aberrations that drive oncogenesis; however, their exact molecular mechanisms remain insufficiently understood. Here, our multi-omics pan-cancer analysis uncovers insights into the impacts of cancer drivers by identifying their significant cis-effects and distal trans-effects quantified at the RNA, protein, and phosphoprotein levels. Salient observations include the association of point mutations and copy-number alterations with the rewiring of protein interaction networks, and notably, most cancer genes converge toward similar molecular states denoted by sequence-based kinase activity profiles. A correlation between predicted neoantigen burden and measured T cell infiltration suggests potential vulnerabilities for immunotherapies. Patterns of cancer hallmarks vary by polygenic protein abundance ranging from uniform to heterogeneous. Overall, our work demonstrates the value of comprehensive proteogenomics in understanding the functional states of oncogenic drivers and their links to cancer development, surpassing the limitations of studying individual cancer types.


Assuntos
Neoplasias , Proteogenômica , Humanos , Neoplasias/genética , Oncogenes , Transformação Celular Neoplásica/genética , Variações do Número de Cópias de DNA
18.
Cancer Cell ; 41(9): 1567-1585.e7, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37582362

RESUMO

DNA methylation plays a critical role in establishing and maintaining cellular identity. However, it is frequently dysregulated during tumor development and is closely intertwined with other genetic alterations. Here, we leveraged multi-omic profiling of 687 tumors and matched non-involved adjacent tissues from the kidney, brain, pancreas, lung, head and neck, and endometrium to identify aberrant methylation associated with RNA and protein abundance changes and build a Pan-Cancer catalog. We uncovered lineage-specific epigenetic drivers including hypomethylated FGFR2 in endometrial cancer. We showed that hypermethylated STAT5A is associated with pervasive regulon downregulation and immune cell depletion, suggesting that epigenetic regulation of STAT5A expression constitutes a molecular switch for immunosuppression in squamous tumors. We further demonstrated that methylation subtype-enrichment information can explain cell-of-origin, intra-tumor heterogeneity, and tumor phenotypes. Overall, we identified cis-acting DNA methylation events that drive transcriptional and translational changes, shedding light on the tumor's epigenetic landscape and the role of its cell-of-origin.


Assuntos
Metilação de DNA , Neoplasias do Endométrio , Feminino , Humanos , Epigênese Genética , Multiômica , Regulação Neoplásica da Expressão Gênica , Neoplasias do Endométrio/genética
19.
Cell ; 186(18): 3945-3967.e26, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37582358

RESUMO

Post-translational modifications (PTMs) play key roles in regulating cell signaling and physiology in both normal and cancer cells. Advances in mass spectrometry enable high-throughput, accurate, and sensitive measurement of PTM levels to better understand their role, prevalence, and crosstalk. Here, we analyze the largest collection of proteogenomics data from 1,110 patients with PTM profiles across 11 cancer types (10 from the National Cancer Institute's Clinical Proteomic Tumor Analysis Consortium [CPTAC]). Our study reveals pan-cancer patterns of changes in protein acetylation and phosphorylation involved in hallmark cancer processes. These patterns revealed subsets of tumors, from different cancer types, including those with dysregulated DNA repair driven by phosphorylation, altered metabolic regulation associated with immune response driven by acetylation, affected kinase specificity by crosstalk between acetylation and phosphorylation, and modified histone regulation. Overall, this resource highlights the rich biology governed by PTMs and exposes potential new therapeutic avenues.


Assuntos
Neoplasias , Processamento de Proteína Pós-Traducional , Proteômica , Humanos , Acetilação , Histonas/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Fosforilação , Proteômica/métodos
20.
Cell Rep Med ; 4(9): 101173, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37582371

RESUMO

We introduce a pioneering approach that integrates pathology imaging with transcriptomics and proteomics to identify predictive histology features associated with critical clinical outcomes in cancer. We utilize 2,755 H&E-stained histopathological slides from 657 patients across 6 cancer types from CPTAC. Our models effectively recapitulate distinctions readily made by human pathologists: tumor vs. normal (AUROC = 0.995) and tissue-of-origin (AUROC = 0.979). We further investigate predictive power on tasks not normally performed from H&E alone, including TP53 prediction and pathologic stage. Importantly, we describe predictive morphologies not previously utilized in a clinical setting. The incorporation of transcriptomics and proteomics identifies pathway-level signatures and cellular processes driving predictive histology features. Model generalizability and interpretability is confirmed using TCGA. We propose a classification system for these tasks, and suggest potential clinical applications for this integrated human and machine learning approach. A publicly available web-based platform implements these models.


Assuntos
Aprendizado Profundo , Neoplasias , Proteogenômica , Humanos , Neoplasias/genética , Proteômica , Aprendizado de Máquina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...